Temporal Coding in Neuronal Populations in the Presence of Axonal and Dendritic Conduction Time Delays
نویسنده
چکیده
Time delays are a ubiquitous feature of neuronal systems. Synaptic integration between spiking neurones is subject to time delays at the axonal and dendritic level. Recent evidence suggests that temporal coding on a millisecond time scale may be an important functional mechanism for synaptic integration. This study uses biophysical neurone models to examine the influence of dendritic and axonal conduction time delays on the sensitivity of a neurone to temporal coding in populations of synaptic inputs. The results suggest that these delays do not affect the sensitivity of a neurone to the presence of temporal correlation amongst input spike trains, and point to a mechanism other than electrotonic conduction of EPSPs to describe neural integration under conditions of large scale synaptic input. The results also suggest that it is the common modulation rather than the synchronous aspect of temporal coding in the input spike trains which neurones are sensitive to.
منابع مشابه
Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays.
Multielectrode recordings have revealed zero time lag synchronization among remote cerebral cortical areas. However, the axonal conduction delays among such distant regions can amount to several tens of milliseconds. It is still unclear which mechanism is giving rise to isochronous discharge of widely distributed neurons, despite such latencies. Here, we investigate the synchronization properti...
متن کاملDendritic and Axonal Propagation Delays Determine Emergent Structures of Neuronal Networks with Plastic Synapses
Spike-timing-dependent plasticity (STDP) modifies synaptic strengths based on the relative timing of pre- and postsynaptic spikes. The temporal order of spikes turned out to be crucial. We here take into account how propagation delays, composed of dendritic and axonal delay times, may affect the temporal order of spikes. In a minimal setting, characterized by neglecting dendritic and axonal pro...
متن کاملSpatio-temporal instabilities in neural fields and the effects of additive noise
The spatio-temporal activity of neural populations is measured by various experimental techniques, such as optical sensitive-dye imaging [2], multi-unit Local Field Potentials [19] or electroencephalography [39]. Most of such experimentally observed activity results from the interaction of a large number of neurons [54]. Consequently to describe theoretically such experimental data the best mod...
متن کاملSpike-timing dynamics of neuronal groups.
A neuronal network inspired by the anatomy of the cerebral cortex was simulated to study the self-organization of spiking neurons into neuronal groups. The network consisted of 100 000 reentrantly interconnected neurons exhibiting known types of cortical firing patterns, receptor kinetics, short-term plasticity and long-term spike-timing-dependent plasticity (STDP), as well as a distribution of...
متن کاملWaves and bumps in neuronal networks with axo-dendritic synaptic interactions
We consider a firing rate model of a neuronal network continuum that incorporates axo-dendritic synaptic processing and the finite conduction velocities of action potentials. The model equation is an integral one defined on a spatially extended domain. Apart from a spatial integral mixing the network connectivity function with space-dependent delays, arising from non-instantaneous axonal commun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001